
A Linux device driver for
EIB-TP-UART-IC and kernel 2.6

(Version 0.03a0)

Changelog

 Reinhold Buchinger

Matrikelnr: 0125124

Oct. 2004

 1 Added functionality

 1.1 TPUART state
You can query the state of the TPUART with the ioctl command TPUART_GET_STATE. The driver sends a
state request message to the TPUART and sets the QUERY_STATE flag in tpuart_t.flags. After that the
process sleeps on the reading waitqueue until the QUERY_STATE flag is cleared again. This is done within
the interrupt handler when a TPUART state indication message is received. It stores the message in
tpuart_state (also part of the tpuart_t structure) and wakes up the sleeping task which returns the state
message to the user. This call will always block for a short time until the response message has arrived! You
can find more information about the returned Control Field in the README document, Section 5.2.

 1.2 Calculating checksum (transmission)
The last octet of an EIB frame is the check octet which is calculated as an odd parity checksum over the set of
corresponding bits belonging to the preceeding octets of the frame. In the V0.02 of the driver the check octet
was part of the telegram which the user program passed to the driver. Now the user program has to pass the
frame without the check octet. The length of the telegram, which you specify in the length field of the message
structure, is always the length of the passed data in bytes. Internally this length value is incremented at the
calculation to stay consistent with the code of V0.02. The driver calculates the check octet in transmit.c.

 1.3 Heartbeat to avoid infinite blocking
The driver in version 0.02 could block infinite in read/write without noticing a dead TPUART. To avoid this
this version implements a heartbeat. The fundamental principle is described in README, Section 5.4.
The heartbeat never disrupts an ongoing transmission. It always waits with its state message until the frame has
been completely transferred to the TPUART. The heartbeat cannot delay an U_AckInformation-Service
because the acknowledgment is immediately sent in the ISR.
The heartbeat can be highly delayed by the ISR under extreme heavy load. But this indicates too that the
TPUART is still alive and doesn't affect the functionality of the heartbeat.

 1.4 Read/Write return values
All return values are summarized in README, Section 5.5. In comparison with version 0.02 the return values
EREMOTEIO and ECOMM were added. The driver returns EREMOTEIO whenever the heartbeat has failed.
The write function sets ECOMM if a negative L_Data.confirm was received.
Additionally the I/O command TPUART_GET_WRITE_STATUS was introduced to receive write error
values in the non-blocking case. You get more information about this command in README, Section 5.3.

 1.5 Detection of a frame end
In Version 0.2 the detection of a frame end relied on the length information of the received frame. There was a
method for detecting a timeout but it wasn't used in valuable way. This version didn't change the processing of
the length information but it is now possible to disable this end detection and try to detect the end of a frame
via timeout. This should be seen as experimental add-on. You get more information about the problem of
detecting a frame end in README, Section 6 and Source Documentation, Section 1.2.

 2 Porting the driver to kernel version 2.6

 2.1 Task queue replaced by workqueue mechanism
Task queues provide a flexible utility for scheduling execution at a later time without resorting to interrupts.
They are used to schedule the bottom halves of transmission and receiving.
The task queue interface was removed in 2.6 kernels and in its place is a new workqueue mechanism. Tasks to
be run out of a workqueue need to be packaged in a struct work_struct structure. Therefore the type of the
variable worker in the xmit_t struct changed from tq_struct to work_struct.
To set up a work_struct structure at run time the following macro was used:

INIT_WORK(struct work_struct *work,
 void (*function)(void *), void *data);

The default queue provided by the kernel was used for the driver. Work_struct structures can be added to this
queue with:

1

int schedule_work(struct work_struct *work);

 2.2 Use spinlocks to protect critical sections
In the 2.6 kernel, it is no longer possible to globally disable interrupts. In particular, the cli(), sti(),
save_flags(), and restore_flags() functions are no longer available. In version 0.02 the output to the serial
port and the updating of the addresses was protected by disabling interrupts. Disabling interrupts globally is
not only no longer possible it also doesn't protect critical sections because in 2.6 a preemptive kernel was
introduced. This means that kernel code can be interrupted at (almost) any time.
There is one big, important exception: preemption will not happen if the currently-running code is holding a
spinlock. In V0.03a0 the protection of critical sections is done by spinlocks. Therefore the variable
spinlock_t lock was added to tpuart_t.
A spinlock works through a shared variable. Any function needing the lock will query it and, seeing that it is
not available, will "spin" in a busy-wait loop until it is available. If you use

spin_lock_irqsave(spinlock_t *lock, unsigned long flags)

not only the lock is acquired but also all interrupts on the local processor are disabled and the current interrupt
state is stored in flags.

spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)

unlocks the given lock and enables interrupts (depending on the flags value).

 2.3 Going to sleep
Sleep_on() and interruptible_sleep_on() were not removed but they shouldn't be used anymore. Where
the old code sleeps because a condition was unfulfilled1 the sleeping instruction was replaced by a "manual"
sleep with the commands

prepare_to_wait(&queue, &wait, TASK_INTERRUPTIBLE)
finish_wait(&queue, &wait)

This avoids unnecessary sleeps as well. In version 0.02 the driver always slept in tpuart_write. To use the
recommended

int wait_event_interruptible (queue, condition)

one needs a condition whether the process should sleep or awake. If the condition is false the process fall
asleep. When it is woken up it checks the condition again and gets running only if the condition is true.
The flag WAKE_UP_WRITE was introduced for this purpose. The process sleeps if it is cleared and the flag
becomes set before the wake call. Thus we have the same behavior as in the old driver.

 2.4 Other changes
- The Makefile was completely rewritten to use the kernel build system for external modules.
- Because of major changes all statements for backward compatibility were removed. This
version only works with 2.6 kernels.
- The second argument (the address) of bit operations (set_bit, test_bit,...) changed
 from void * to volatile unsigned long *. The variables were adjusted to avoid warnings.
- Include linux/slab.h instead of linux/malloc.h.
- Don't use MOD_INC_COUNT and MOD_DEC_COUNT anymore.
- MODULE_PARAM(variable,type) was replaced by module_param(name,type, perm). The new parameter
declaration scheme add type safety and new functionality.
- MODULE_LICENCE statement was added to avoid a tainted kernel. Tainting of the kernel is a way of indicating
that a proprietary module has been inserted, which is not really true for this driver.
- Struct tpuart_fops adapted to ANSI C standard initializer format.
- Added __exit to tpuart_cleanup to be conform with tpuart_init.
- Return type of interrupt handler changed from void to irqreturn_t. If the interrupt handler recognizes and
handles a given interrupt, it should return IRQ_HANDLED. If it knows that the interrupt was not on a device it
manages, it can return IRQ_NONE instead. This way a handler can tell the kernel about spurious interrupts.
- The new macro unsigned int iminor(struct inode *inode) was used to get the minor number.

1 The process should sleep if deque_is_empty_irq returns true in read or deque_is_full_irq returns true in
write.

2

- Bug in version 0.02: changed TPUART_IOCMAX in tpuart_main.h from 17 to 21. TPUART_IOCMAX is used to
check if ioctl is called with an valid number.
- Bug in version 0.02: in the ISR, transmit interrupt, the read pointer is also incremented after the last write.
Therefore the comparison dev→tx.read == dev→tx.end couldn't be true.
- The support for long frames was removed because it becomes obsoleted by extended frame format defined in
KNX handbook 1.1 volume 3 supplement 13.

Literature
[RC01] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers, 2nd Edition. O'Reilly, 2001.

[TP01] Siemens. EIB-TP-UART-IC datasheet. 2001.

[Deg] Fachhochschule Deggendorf. EIB-Linux-Treiber - Linux open Source.
 http://www.hto.fh-deggendorf.de/komm/building/projekte/linux.html

[EIB99] EIBHandbook. EIB Handbook Series Volume 3.
http://eiba-software.com/eibacom/Volume3.zip 1999

[LWN] Jonathan Corbet. Porting device drivers to the 2.6 kernel.
 http://lwn.net/Articles/driver-porting/

[KNB] Kernelnewbies. http://www.kernelnewbies.org/

[SB] Interfacing the Serial/ RS-232 Port. http://www.beyondlogic.org/serial/serial1.htm

3

