
Free Development Environment for
Bus Coupling Units (BCUs)

for the European Installation Bus (EIB)

Martin Kögler
mkoegler@auto.tuwien.ac.at

June 13, 2005

Course of the talk

1 Introduction

2 BCU SDK development

3 M68HC05 port of the GNU toolchain
GCC

4 Summary

EIB - European Installation Bus

EIB is a home and building automation system.

Maintained by the KONNEX Association.

Part of the KNX specification.

Used for low speed applications like light switching and HVAC.

Different transmission medias available (power-line, radio
frequency, twisted pair).

Data transfer with group communication / group objects

Installations configured with common Windows integration
tool called ETS.

EIB - European Installation Bus

Bus Coupling Units (BCUs)

Standardized, generic platforms for embedded EIB devices

Consists of a microcontroller (Freescale M68HC05), bus
interface and system software in the ROM.

Application programs loaded in the EEPROM (local or via the
bus).

Two BCU families: the older BCU 1 and the new BCU 2
family.

EIB bus interfaces (for PCs)

BCU 1 and BCU 2 include a serial interface (PEI 16 and
FT1.2 protocol)

TPUART IC implements Layer 1 and parts of Layer 2

EIBnet/IP tunnels EIB frames over TCP/IP

Current situation for non commercial developers

A free SDK for the BCU 1 is available (including an
assembler).

Only commercial C compiler for M68HC05 exists.

End-user versions of the ETS only accept certified programs.

Some tools to access the EIB bus exists, but limited to certain
bus interfaces and functions.

⇒ No free integrated solution for BCU 2 exists.

Goal of the project

creation of a free SDK for the BCU 2

based on the GNU utilities (GCC, Binutils)

provides RAD like concept (instead of a plain assembler
interface)

C is used as programming language

includes an interface for integration tools (this will be parts of
future projects)

no ETS interface
provides support for compilation at download time

provides over different bus access devices access to same
management functions

no GUI interface

EIB bus access

A network capable, multi user daemon (named eibd) was
developed.

Provides access to Layer 4 as well as complex management
functions over a simple protocol.

best effort, cooperative vBusmonitor mode

The bus access is hidden by the backends:

FT1.2 protocol of the serial interface of the BCU 2.
EIBnet/IP EIBnet/IP Routing and EIBnet/IP Tunneling

client.
TPUART protocol of the TPUART IC. It uses the plain

serial driver or a Linux kernel driver.
PEI16 protocol of the serial interface of a BCU 1 using

a kernel driver, which does the time critical data
exchange. Experimental version using the serial
driver exists.

RAD like development approach

BCU program consists of a specification of EIB objects

used objects
their properties
their event handlers

Assignment of low level objects to meta description of the
function.

The C fragments for event handlers are put in separate files.

Example (1/4)

Common definition

Dev ice {
PEIType 0 ;
BCU bcu12 ; / / use bcu20 f o r a BCU 2 . 0
T i t l e ” Cond i t i o n a l n ega t i on ” ;

Meta description (and assignment of low level objects)

Func t i o na lB l o c k {
T i t l e ” Cond i t i o n a l n ega t i on ” ;
P r o f i l e I D 10000 ;
I n t e r f a c e {

Re f e r en c e { send } ;
Abb r e v i a t i o n send ;
DPTType DPT Bool ; / / same as 1 . 0 02

Example (2/4)

A receiving group object

GroupObject {
Name r e c v ;
Type UINT1 ;
on update s end update ;
T i t l e ” I npu t ” ;
StateBased t r u e ;

} ;

A sending group object

GroupObject {
Name send ;
Type UINT1 ;
Send ing t r u e ;

Example (3/4)

Code fragment for the event handler

vo i d s end update ()
{

i f (cond){
send=r e c v +1;
s e n d t r a n sm i t () ;
}

}

Example (4/4)

Configuration description

<?xml v e r s i o n =”1.0”?>
<Dev i c eCon f i g >

<ProgramID>xxxxxxxxxxxx </ProgramID>
<Phy s i c a lAdd r e s s >1.3.1</ Phy s i c a lAdd r e s s >
<GroupObject i d=”id0”>

<P r i o r i t y >low</P r i o r i t y >
<SendAddress >0/0/1</SendAddress>

</GroupObject>

selects configuration parameters of the program

the used individual address

assignment of group addresses to group objects

. . .

Work flow with integration tools

planning and installation

project engineer

BCU config
build.ai

configuration
descriptioninformation

application

build.img eibd

BCU bus interface
EIB network

BCU SDK Development BCU SDK Download

direct bus access

image

for development

Integration Tool

for development

C files

Data flow

configuration
description

application

information

build.ai build.img

Integration Tool

processing

program text bypass for development

configuration description generator
for development

program text

meta data meta data

skeleton generator

Port of the GNU toolchain

the GNU toolchain was ported to the M68HC05 architecture.

the limitations of the BCUs were used as design driver
(<1k EEPROM, < 100 Bytes RAM).

Ported programs include:

Binutils (assembler, linker and object file tools)
GCC (GNU C compiler)
CPU core simulator
GDB frontend for the simulator
C runtime libraries for the simulator

Simulator and C runtime libraries needed for GCC regression
tests

GDB for analyzing GCC generated code.

⇒ incomplete

Features of the binutils port

Relaxation

Instruction formats with different length exist.

The needed format is often unknown at assembler runtime.

The linker replaces longer variants if possible.

Expanded conditional jumps are converted back, if possible.

Section movement

The BCU 2 has non contiguous RAM sections.

GCC needs automated distribution of variables.

GCC prefixes each variable with a special command.

The assembler creates a unique section.

The linker can be instructed to move sections from a full
memory region into another memory region.

GCC overview

GNU Compiler Collection is a portable suite of compilers
(about 56 supported architectures)

language frontends for C, C++, Ada, Java, . . .

language independent middle and back end

internal representations

GENERIC
GIMPLE
RTL

uses pattern matching

global optimizations

per function optimizations

GNU C compiler

The M68HC05 family has several limitations:

Two hardware registers (accumulator and index register)

Only a small call stack

Only 8 bit index plus fixed address addressing mode (beside a
fixed 8 or 16 bit address) but 16 bit address space.

GCC expects:

Many GPR (general purpose registers)

A data stack

pointers, which can cover the entire address space

⇒ Emulation of missing features

small memory (BCU1: 256 byte EEPROM, 18 byte RAM) limits
useable functions.

GCC internals

13 Bytes of RAM (RegB–RegN, reserved by BCU OS) are
used as GPR.

A byte of RAM is used as data stack pointer. Data stack
starts at a 256 byte boundary. Using a different initialization
value, a smaller stack area can be used.

16 bit pointers are emulated with self modifying code.

mul, div and floating point operations are handled by library
functions.

Support for 1 to 8 byte integer types

Support for transparent eeprom access (named address
spaces).

Expensive operations like setjmp/longjmp are left out.

GCC compilation process

GCC parses a function

GCC performs target independent optimizations on a tree
representation.
GCC converts it to high level RTL (Register Transfer
Language)

uses only GPRs and memory locations as operands.
uses pseudo instructions for the 8/16/24/32/.. bit operands

some optimizations are done

register allocator replaces pseudo registers with GPRs and
stack locations.
splitted in low level RTL

each instruction corresponds to an assembler instruction or
library call.
stack pointer cached in X register

some optimizations are redone.

assembler code generated

State of the GCC port

GCC is working

1335 of 36394 failed regression test cases
large parts fail because of insufficient memory and stack
overflows.

No target specific optimizations (e.g. peephole optimizations)
implemented.

G++ frontend is partially working (e.g. no exceptions).

Some limitations:

no overflow detection
overflows can occur in compare operations
. . .

⇒ Lots of improvements are possible

Summary

A free set of tools to develop programs for BCU 1 and BCU 2
in a RAD like way was implemented.

A EIB bus interface daemon was developed.

The GNU toolchain was ported to the M68HC05 architecture.

The GCC port needed several tricks to make GCC cope with
the limitations of the architecture.

Questions?

Project homepage:
http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcus

http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcus

	Course of the talk
	Introduction
	BCU SDK development
	M68HC05 port of the GNU toolchain
	GCC

	Summary

